
An Empirical Study of Method Chaining in Java
Tomoki Nakamaru

nakamaru@csg.ci.i.u-tokyo.ac.jp

The University of Tokyo

Tomomasa Matsunaga

matsunaga@csg.ci.i.u-tokyo.ac.jp

The University of Tokyo

Tetsuro Yamazaki

yamazaki@csg.ci.i.u-tokyo.ac.jp

The University of Tokyo

Soramichi Akiyama

akiyama@ci.i.u-tokyo.ac.jp

The University of Tokyo

Shigeru Chiba

chiba@acm.org

The University of Tokyo

ABSTRACT

While some promote method chaining as a good practice for im-

proving code readability, others refer to it as a bad practice that

worsens code quality. In this paper, we first investigate whether

method chaining is a programming style accepted by real-world

programmers. To answer this question, we collected 2,814 Java

repositories on GitHub and analyzed historical trends in the fre-

quency of method chaining. The results of our analysis revealed

the increasing use of method chaining; 23.1% of method invoca-

tions were part of method chains in 2018, whereas only 16.0% were

such invocations in 2010. We then explore language features that

are helpful to the method-chaining style but have not been sup-

ported yet in Java. For this aim, we conducted manual inspections

of method chains that are randomly sampled from the collected

repositories. We also estimated how effective they are to encourage

the method-chaining style if they are adopted in Java.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories; Software design engineering.

KEYWORDS

Method chaining, Repository mining, Quantitative analysis

ACM Reference Format:

Tomoki Nakamaru, Tomomasa Matsunaga, Tetsuro Yamazaki, Soramichi

Akiyama, and Shigeru Chiba. 2020. An Empirical Study of Method Chaining

in Java. In 17th International Conference on Mining Software Repositories
(MSR ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3379597.3387441

1 INTRODUCTION

Method chaining is a programming style in which multiple method

invocations are chained in a single expression as follows:

new AlertDialog ()

.setTitle("Warning")

.setMessage("Are you sure?").show ();

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00

https://doi.org/10.1145/3379597.3387441

Method chaining is promoted as a good practice that improves

the readability of source code. By method chaining, redundant

temporary variables and code repetitions are eliminated [8]; related

method invocations are grouped into a single expression [34, 42];

an expression becomes easy to read from left to right as natural-

language texts [13, 14, 18, 42].

However, at the same time, method chaining is often referred to

as a bad practice. In the thread on StackOverflow [8], many posts

claim that method chaining worsens the readability. For instance, a

post says:

If you do everything in a single statement then that is

compact, but it is less readable (harder to follow) most

of the times than doing it in multiple statements.

Another post mentions that method chaining makes code confusing

since it hides the type of an object that a programmer operates upon.

Negative opinions are not only about code readability. One post in

the thread [8] states that method chaining is not reconcilable with

most debuggers that offer line-level breakpoints:

You can’t put the breakpoint in a concise point so you

can pause the program exactly where you want it. If

one of these methods throws an exception, and you

get a line number, you have no idea which method in

the “chain” caused the problem.

Further, several posts in the thread [8] claim that method chaining

violates the law of Demeter [27], a guideline for developing loosely

coupled software.

The controversy above leads us to our first question: Is method

chaining accepted widely by real-world programmers? To answer

this question, we collected Java repositories on GitHub and an-

alyzed historical trends in the frequency of method chaining. If

method chaining is commonly considered as a bad practice, pro-

grammers would avoid chaining method invocations. As a result,

the frequency would be the same or decrease over time. Conversely,

if the frequency increases, that result will be supportive evidence

for the wide acceptance of method chaining in the real world.

The answer to our first question is yes; the frequency of method

chaining has increased considerably. Our analysis revealed that

23.1% of method invocations were part of method chains in 2018,

whereas only 16.0% were such invocations in 2010. To help us better

understand the trends, this paper also presents our investigation

on the bias in the frequency and the categories of method chains.

Our second question then arises in response to the first answer:

How can we extend the Java language to support this increasing

trend (or what API design should library developers adopt)? To

answer this question, we manually analyzed method chains that

https://doi.org/10.1145/3379597.3387441
https://doi.org/10.1145/3379597.3387441

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea T. Nakamaru, T. Matsunaga, T. Yamazaki, S. Akiyama, and S. Chiba

Algorithm 1 Dataset construction

Input: Set of repositories 𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑖𝑒𝑠

Output: Dataset 𝐷𝑎𝑡𝑎𝑠𝑒𝑡

1: for each 𝑟𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 ∈ 𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑖𝑒𝑠 do
2: 𝑁𝑎𝑚𝑒 ← Name of 𝑟𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦

3: 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛𝑠 ← Year-end revisions of 𝑟𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦

4: for each 𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 ∈ 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛𝑠 do
5: 𝑦𝑒𝑎𝑟 ← Year of 𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛

6: for each .java file 𝑓 𝑖𝑙𝑒 in 𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 do

7: 𝑐𝑜𝑑𝑒 ← Content of 𝑓 𝑖𝑙𝑒

8: Add (𝑐𝑜𝑑𝑒,𝑛𝑎𝑚𝑒, 𝑦𝑒𝑎𝑟) to 𝐷𝑎𝑡𝑎𝑠𝑒𝑡

are randomly sampled from the collected repositories. We present

language features (or API design) that we discovered are helpful for

encouraging the method-chaining style in Java. Those features are

supported in other languages but have not been supported yet in

Java. We also estimated how effective they are if they are adopted

in Java.

The contribution of this paper is summarized as follows:

• We present, to the best of our knowledge, the first quantitative

study on the use of method chaining that is based on a large set

of source code in the real world.

• We empirically show the increasing use of method chaining

in Java, which has been claimed without empirical evidence in

preceding studies [20, 21, 26, 33, 34, 42, 43].

• Wepresent language features (or API design) that supportmethod

chaining but are not supported yet in Java. We statistically esti-

mated how effective each feature/design would be.

The remainder of this paper is organized as follows: Section 2 de-

scribes the dataset and method that we use to answer our questions.

Section 3 and 4 show the results of our analyses. Section 5 discusses

the threats to validity of our results. Section 6 relates our work to

preceding studies, and Section 7 concludes our paper.

2 MATERIALS AND METHODS

2.1 Dataset

To build our dataset, we collected 2,814 Java repositories on GitHub.

Those repositories are the ones that were listed at least once in

the most-starred 1000 Java repositories on GitHub between Nov.

10th, 2019 and Dec. 21st, 2019. We collected them by monitoring

the response of the GitHub API
1
every day during that period.

We built our dataset by extracting syntactically valid .java
files from the year-end revisions of each repository in the most-

starred repository set. The year-end revision of a year is the lat-

est revision made in that year. We marked a .java file as syn-

tactically valid when JavaParser
2
, a parser often used both in in-

dustry and academia, successfully parses the content of that file.

To find year-end revisions, we use the command git rev-list
<branch>, which lists all the revisions reachable from <branch>.
We set <branch> to the default branch

3
of the repository. The de-

fault branch differs depending on the configuration of the repository

on GitHub, but it is master in most repositories.

An entry of the dataset is a tuple (𝑐𝑜𝑑𝑒, 𝑛𝑎𝑚𝑒,𝑦𝑒𝑎𝑟), where 𝑐𝑜𝑑𝑒
is the content of a source file, 𝑛𝑎𝑚𝑒 is the name of the repository to

1
https://api.github.com/search/repositories?q=language:java&sort=stars

2
https://javaparser.org

3
https://help.github.com/en/articles/setting-the-default-branch

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

Year

0.0

0.5

1.0

1.5

2.0

Nu
m

be
r o

f r
ep

os

1e3

(a) Number of repositories

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

Year

0

2

4

6

Nu
m

be
r o

f f
ile

s

1e5

(b) Number of files

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

Year

0.00
0.25
0.50
0.75
1.00
1.25

Nu
m

be
r o

f l
in

es

1e8

(c) Number of lines

Figure 1: Number of repositories, files, and lines

1 List <String > list = new ArrayList ();

2 list.add(

3 createRandomString () // Length = 1

4); // Length = 1

5 list.stream ().map(s -> {

6 return s.replace("foo", "bar")

7 .replace("baz", "qux"); // Length = 2

8 }). forEach(s ->

9 String output = String.format(

10 "%d lines",

11 s.split("\n"). length // Length = 1

12); // Length = 1

13 System.out.println(output); // Length = 1

14); // Length = 3

Figure 2: Method chains and their lengths

which the file belongs, and 𝑦𝑒𝑎𝑟 is the year of the revision to which

the file belongs. Algorithm 1 shows pseudocode for constructing

our dataset from a given set of repositories. A set of themost-starred

repositories were used as the input to that algorithm.

Our dataset contains over three million Java files (approximately

seven hundred million lines) in total. Figure 1 shows the number

of repositories, files, and lines in each year. As seen, the amount

of the collected code considerably varies from year to year. This

property of our dataset indicates that it is inappropriate to directly

compare the raw numbers of the method chains in each year.

2.2 Definition of Method Chain

We define a method chain as a sequence of one or more method

invocations joined by the “.” symbol. We define the length of a

https://api.github.com/search/repositories?q=language:java&sort=stars

An Empirical Study of Method Chaining in Java MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

100 101 102 103

n

10 8

10 6

10 4

10 2

100

f n

2018
2010

(a) 𝑓𝑛 in 2010 and 2018
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18

Year

0.00

0.05

0.10

0.15

0.20

r

(b) 𝑟

Figure 3: Frequency of method chaining

method chain as the number of invocations in the sequence. For

example, the Java code snippet shown in Figure 2 contains five

chains of length 1, one chain of length 2, and one chain of length 3.

We used JavaParser to parse a Java file and mined the parsing result

for method chains.

We first enumerated the chains of length 1 (not-chained method

invocations) from our dataset to obtain the baseline values. If the

number of not-chained invocations increases at the same pace as

the number of method chains longer than one, we cannot argue that

the use of method chaining is growing. Note that, for convenience,

we below regard a not-chained invocation as a method chain.

3 IS METHOD CHAINING ACCEPTED?

As we described in Section 1, we measure the frequency of method

chaining to judge whether it is accepted in the real world. In our

analyses, we use only the code that is newer than or in 2010. 2010

is the year in which the number of repositories exceeds 250 and

in which the number of files exceeds 10
5
for the first time. We

adopt this criterion to avoid that the programming styles of a small

number of old repositories overly affect our analysis.

We use the following indicators 𝑓𝑛 and 𝑟 to measure the fre-

quency:

𝑓𝑛 = 𝑚𝑛/𝑚1,

𝑟 = (Σ2≥𝑛𝑛𝑚𝑛)/(Σ1≥𝑛𝑛𝑚𝑛),

where 𝑚𝑛 is the raw number of method chains of length 𝑛. The

indicator 𝑓𝑛 is the relative occurrence of chains of length 𝑛. The

indicator 𝑟 is the ratio of the method invocations that are part of

method chains longer than 2, among all the method invocations. For

example, the 𝑓2 value of the code in Figure 2 is 1/5 (= 0.2) since the

code includes five chains of length 1 and one chain of length 2. The

𝑟 value of the example code is 5/10 (= 0.5) since the code includes

ten method invocations in total and five of them constitute the

method chains of length 2 or 3.

Figure 3a shows the plot of 𝑓𝑛 for the code in 2010 and 2018. (The

𝑓𝑛 values are computed over the total dataset and not the averages

of per-file values.) The horizontal axis shows the value of 𝑛 and the

vertical axis shows the value of 𝑓𝑛 . Note that we use logarithmic

scales for both vertical and horizontal axes. Figure 3b shows the

plot of 𝑟 from 2010 to 2018. Although we omit the plot of 𝑓𝑛 values

from 2011 to 2017, similar distributions are observed in those years.

0.00 0.25 0.50 0.75 1.00
r

0

20

40

60

Nu
m

be
r o

f r
ep

os

2018
2014
2010

(a) Distribution

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

0.0

0.1

0.2

0.3

0.4

r

q3
q2
q1

(b) Trend of quartiles

1st quartile 2nd quartile 3rd quartile Average

+1.71% +4.27% +7.34% +7.08%

Changes of quartiles from 2010 to 2018

Figure 4: Distribution and trend of per-repository 𝑟

Either of Figure 3 shows that the increasing use of method chain-

ing. The relative number of method chains has increased from 2010

to 2018 in almost all lengths. The 𝑟 value has increased from 16.0%

to 23.1%. Further, the maximum length of a chain has also been

increased from 2010 to 2018.

3.1 Power-law Distribution

As seen in Figure 3, 𝑓𝑛 decreases almost linearly in the log-log scale

plot. Such a linear decrease is observed when a distribution has a

heavy tail [35]. The heavy tail indicates that extremely long chains

often appear and their occurrences are not exceptional, unlike a

normal distribution. Such distributions are found in several mea-

sures of source code such as change sizes [22, 28, 41], component

sizes [25], in-degree and out-degree in dependency networks [29],

and the number of subclasses [40].

We performed the Kolmogorov-Smirnov (KS) test to see whether

the right tail of 𝑓𝑛 in 2018 is generated by a power-law distribution,

a well-known heavy-tailed distribution. The test reported 9 for 𝑥𝑚𝑖𝑛

and 0.937 for 𝑝-value. The 𝑝-value is greater than the commonly

used significance level 0.05. These results of the KS test indicate

that it is consistent to assume that the observed values for 𝑛 ≥ 9 are

generated by a power-law distribution. Although it is interesting

to discover the generation model of such a distribution, we leave it

for future work.

3.2 Bias in Frequency

Since the two indicators shown in Figure 3 represent average values

for the repositories in our dataset, we observed only the average

trend in our dataset. Thus we then examined a hypothesis, that only

a small number of large repositories in our dataset might contain a

large number of method chains and increase the total number of

chains in our dataset while others contain a small number of chains.

To reveal the bias of the increase found in Figure 3, we computed

the 𝑟 value for each repository and carried out the analysis on their

distribution.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea T. Nakamaru, T. Matsunaga, T. Yamazaki, S. Akiyama, and S. Chiba

100 101 102 103

n

0.00

0.25

0.50

0.75

1.00

u n

2018
2010

𝑛 𝑢𝑛 in 2018 𝑢𝑛 in 2010

1 100% 100%

8 50.1% 42.7%

9 44.1% 38.0%

41 5.10% 4.31%

42 4.98% 4.31%

Figure 5: Ratio containing chains longer than or equal to 𝑛

Figure 4a shows the histograms of per-repository 𝑟 in 2010, 2014,

and 2018. The horizontal axis shows the value of 𝑟 and the vertical

axis shows the number of repositories. Figure 4b shows the trend

of their quartiles.

Figure 4 shows that the overall 𝑟 value is increased not only

by a few repositories. If the increase has occurred only in a small

number of repositories, we would not have observed changes in

the first and second quartiles. However, the increase of overall 𝑟

value is increased significantly by repositories containing a lot of

method chains since the change in the third quartile is much larger

than the change in the first quartile.

To see the widespread use from a different perspective, we cal-

culated the following value:

𝑢𝑛 : The ratio of repositories that contain one or more method

chains whose length is longer than or equal to 𝑛.

The left chart in Figure 5 shows the plot of𝑢𝑛 in 2010 and 2018. The

horizontal axis shows the value of 𝑛 and the vertical axis shows the

value of 𝑢𝑛 . Note that we use logarithmic scales for the horizontal

axis. The table on right shows the values that we refer to in later

analyses.

Figure 5 shows that more than 50% of repositories contain at least

one chain longer than length 7. Since chains of length 8 are unlikely

to be composed by programmers who tend to avoid method chain-

ing, this result is another supportive evidence for the widespread

use of method chaining.

We also investigated the difference in the use of method chaining

between testing code and non-testing code. Figure 6 shows the plot

of 𝑓𝑛 values and the changes in 𝑟 values in those code sets.

The figures show that the testing code contains more method

chains longer than 2. The increasing amount in the testing code

(+8.57%) is larger than the one in the non-testing code (+5.37%).

On the other hand, the maximum length in the non-testing code is

longer than the one in the testing code. Although there are those

differences, the increasing trends and the heavy-tailed distributions

can be seen in both code sets. From these results, we concluded

that method chaining is used not only in either code set but in both

sets.

3.3 Categories

To better understand the trends in method chaining, we manually

categorized the method chains in 2018 and 2010 by their behaviors.

For this analysis, we divided the set of method chains into three

groups by their length: Short, Long, and ExtLong. Table 1 shows

the range of lengths and the number of chains for each group. We

100 101 102 103

n

10 8

10 6

10 4

10 2

100

f n

2018
2010

(a) 𝑓𝑛 of non-testing code

100 101 102 103

n

10 8

10 6

10 4

10 2

100

f n

2018
2010

(b) 𝑓𝑛 in testing code

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

0.0

0.1

0.2

0.3

0.4

r

non-test
test

(c) 𝑟

Figure 6: Non-testing code vs. Testing code

Table 1: Groups of Method Chains

Short Long ExtLong

Length range 1 < len. ≤ 8 8 < len. < 42 42 ≤ len.

of chains in 2018 3,343,781 19,084 280

of chains in 2010 384,549 1,106 27

chose the border length 8 and 42 in consideration of 𝑢𝑛 values,

the ratio of repositories that contain one or more method chains

whose length is longer than or equal to 𝑛. In 2018, more than 50%

of repositories contain chains longer than 8, and less than 5% of

repositories contain chains longer than 42, as shown in Figure 5.

Since it is not feasible to manually inspect all the chains in Short

and Long, we analyze randomly-sampled 280 method chains in

each of those groups. We analyze all the chains in ExtLong.

We categorized amethod chain into either of Accessor, Builder,

Assertion, and Others. Figure 7 describes the first three of them

by example. Others is the category for chains that do not match

any of Accessor, Builder, and Assertion.

Figure 8 illustrates the ratios of each category in Short and

Long. The black bars in the figure indicate the margin of errors

due to the sampling at a 95% level of confidence. Since we did not

find any Accessor chain in the samples of Long, no blue bars are

drawn in Long. The error bar for Assertion in Long in 2010 is not

drawn since the number of chains is too low to compute its valid

margin. All the chains in ExtLong are categorized into Builder in

both 2010 and 2018.

Figure 8 shows that approximately 80% of chains in Short are

categorized into Accessor in 2010. In 2018, the ratio of Accessor

An Empirical Study of Method Chaining in Java MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

// Access

jfc.getCategoryPlot (). getRangeAxis ();

miniCluster.getNameNode (). getNamesystem ()

.getBlockManager (). getDatanodeManager ()

.getNumStaleNodes ();

histogram.getBuckets ().get (0). getKey ();

getSubscriptionAttributes ()

.getInterestPolicy (). isCacheContent ();

// Access for operation

index.getLibraries ().add(libIndex);

getSupportActionBar ()

.setDisplayShowTitleEnabled(false);

Accessor. A chain where all methods perform data access except

for the last method. Although a chain in this category violates the

law of Demeter [27], it frequently appears in the real world code.

// java.lang.StringBuilder

sb.append("New"). append(kindName). append("Array");

// com.google.common.base.MoreObjects

MoreObjects.toStringHelper(this)

.add("iLine", iLine)

.add("lastK", lastK)

.add("spacesPending", spacesPending)

.add("newlinesPending", newlinesPending)

.add("blankLines", blankLines)

.add("super", super.toString ())

.toString ()

Builder. A chain that builds an object. It often ends with the

invocation of a method named like buildFoo or toFoo.

// Mockito

when(myHttpClient.execute(capt.capture ()))

.thenReturn(myHttpResponse);

verify(map). containsKey("testOk");

// AssertJ

assertThat(kunaTimeTicker.getTicker ()). isNotNull ();

Assertions

.assertThat(actualObj.has("outline_colors"))

.isTrue ();

Assertion.A chain that describes expected behaviors of an object.

Understandably, such chains are written in test code. We found

usages of the two libraries Mockito and AssertJ in the sampled set

for this category.

Figure 7: Categories of Method Chains

decreases to approximately 55%, and the ratios of Builder and

Assertion increase accordingly. These changes in the ratios could

be explained by the general acceptance of fluent interfaces, API

design that encourages its users to chain method invocations [18,

23]. An Accessor chain can be composed even when the library is

not fluent. On the other hand, a Builder/Assertion chain needs a

fluent interface to compose. In Java, object building and assertions

are used to be written in the non-chaining style as follows:

Short Long
Length group

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

20
18

20
10

20
18

20
10

20
18

20
10

20
18

20
10

20
18

20
10

20
18

20
10

20
18

20
10 20

18
20

10

20
18

20
10 20

18
20

10

20
18

20
10

20
18

20
10

20
18

20
10

20
18

20
10

Accessor
Builder
Assertion
Others

Figure 8: Constitution ratio of each category

// new Builder (). setFoo (). setBar (). build ();

Builder b = new Builder ();

b.setFoo ();

b.setBar ();

Object o = b.build ();

// assertThat(list). contains ("a"). contains ("b");

assert list.contains("a");

assert list.contains("b");

Thus, the increase in the ratio of Builder/Assertion chains indi-

cates the increasing use of fluent interfaces. The same trends can

be seen in the changes in Long. The ratio of Others considerably

decreases as the use of Builder and Assertion chains increases.

The increasing use of fluent interfaces is supportive evidence for

the wide acceptance of method chaining.

Although we expected to frequently encounter the use of the

Stream API in Others, we found only two such chains (0.71%)

in Short and three chains (1.07%) in Long in 2018. We found no

Stream API usages in 2010 as the API is not introduced into Java in

2010.

3.4 Extremely Long Chains

Since we did not immediately see why and how such long chains

exist in the real-world code, we conducted further inspection of the

chains in ExtLong in 2018.

3.4.1 How much of the ExtLong chains are in testing code? We

found 140 chains (50% of ExtLong) in testing code. As mentioned

above, all the chains in ExtLong are composed to build an object.

Thus, half of the ExtLong chains build objects for testing.

3.4.2 Are the ExtLong chains machine-generated? We found only

five generated chains (1.79% of ExtLong). All of those chains

are generated by aws-java-sdk-code-generator. Most chains

in ExtLong are very likely to be written by human programmers.

3.4.3 Which libraries produce the ExtLong chains? To answer this

question, we checked the package name of the first method invo-

cation of each chain. We found 71 different package names, which

indicates that various libraries are used to compose extremely long

chains. However, a large bias exists in the number of appearances

of each library: 53.5% of the libraries are used only once; Three

libraries constitute 43.9% of the appearances. The following sum-

marizes the most-used three libraries:

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea T. Nakamaru, T. Matsunaga, T. Yamazaki, S. Akiyama, and S. Chiba

Elasticsearch
4
We found 75 chains (26.8%) using XContentFactory

or XContentBuilder in this library. Those classes are for building

data used in Elasticsearch.

Guava
5
We found 30 chains (10.7%) using immutable collection

builders (e.g. ImmutableSet.Builder) in this library.

Java Std. Lib. We found 18 chains (6.43%) using StringBuilder
or StringBuffer in java.lang

3.4.4 Are the ExtLong chains styled nicely? To improve the read-

ability of extremely long chains, programmers often introduce se-

mantical indentations as follows:
6

String jsonString = new PrettyJSON ()

.array ()

.object ()

.key("method") .value("POST")

.key("to") .value("...")

.key("body")

.object ()

.key("key").value("ID")

.key("value").value("fra")

... # Our comment: Omitted

.endObject ()

.key("id") .value (0)

.endObject ()

... # Our comment: Omitted

.endArray (). toString ();

Another technique is to insert empty lines and comments to group

semantically related part as follows:
7

return new SpacingBuilder(

settings , BallerinaLanguage.INSTANCE)

// Keywords

.around(IMPORT). spaceIf(true)

.around(AS). spaceIf(true)

.around(CHECK). spaceIf(true)

Our comment: Empty line for segmentation

.around(ABORTED). spaceIf(true)

.around(COMMITTED). spaceIf(true)

.around(LISTENER). spaceIf(true)

... # Our comment: Omitted

We counted the number of chains that are styled nicely as shown

above. Our inspection revealed that 184 chains are nicely-styled,

which is 66.9% of handwritten chains.

RQ: Is Method Chaining Accepted in the Real World?

Answer: Method chaining is increasingly used in the real world.

In 2018, 23.1% of method invocations are part of chains longer

than 2, while 16.0% are such invocations in 2010. More than 50%

of repositories contain at least one chain that is longer than seven.

Approximately 5% of repositories contain chains that are longer

4
https://github.com/elastic/elasticsearch

5
https://github.com/google/guava

6
https://github.com/neo4j/neo4j/blob/a43b26fac61c59da813ec9302a24dd86f6657537/

community/server/src/test/java/org/neo4j/server/rest/BatchOperationIT.java#L501

7
https://github.com/ballerina-platform/ballerina-lang/blob/27292e84b9f661da89b6c

66840802f2196decb0d/tool-plugins/intellij/src/main/java/io/ballerina/plugins/idea/f

ormatter/BallerinaFormattingModelBuilder.java#L328

than 42. Further, the increase is not caused by a few repositories

that heavily use method chaining.

We also observed the increasing use of fluent interfaces, which is

a supportive result for the wide acceptance of method chaining. In

2010, approximately 80% of chains are accessor chains, those that

can be composed without fluent interfaces. The ratio of accessor

chains decreased to approximately 55% in 2018, and the ratio of

builder/assertion chains – those that require fluent interfaces to

compose – increased accordingly.

All the chains longer than 42 are builder chains. 98.2% of them are

very likely to be handwritten, and 65.7% are styled nicelywith inden-

tations, empty lines, and comments. The variety of such extremely

long chains is unexpectedly wide. We found that 71 packages are

used for composing 280 extremely long chains.

Implications: Our results are supportive evidence for the wide

acceptance of method chaining in the real world. If method chain-

ing is commonly considered as a bad practice, the use of method

chaining would be the same or decreasing. However, to clearly state

that method chaining is accepted, user studies need to be conducted.

Such studies are our primary future work.

The above-mentioned implication will motivate the developers

of fundamental software such as languages, libraries, and inte-

grated development environments (IDEs). It will be a supportive

and quantitative ground in the discussion of adding new functions

for method chaining. For example, library developers can claim that

adding fluent interfaces is beneficial for their users; IDE developers

can discuss the priority of supporting breakpoints between method

invocations in a chain and of a code formatting feature for long

chains. The answer also motivates researchers of tools for devel-

oping safe fluent interfaces [20, 21, 26, 33, 34, 42]. The researchers

can quantitatively state that their tools and further studies on the

tools are beneficial for a number of real-world programmers.

4 HOW CANWE EXTEND JAVA?

To investigate what language features (or library design) needs to

be supported to encourage the use of the method-chaining style,

we manually analyzed randomly-sampled 385 chains and the code

around them. Since we are interested in why method invocations

are not chained, the population of the random sampling was the

chains of all lengths (including non-chained invocations) in 2018.

We attempted to find code patterns that could be transformed

into the method-chaining style if Java supported an appropriate

language feature or the library supported appropriate API design. In

what follows, we present the found patterns with their description

by example and the number of their occurrences in the randomly-

sampled dataset. We then present appropriate language features

or API design for those patterns. At the end of this subsection, we

summarize the estimated ratios of those patterns in the population.

4.1 NullExceptionAvoidance

When a method invocation may return null, a programmer cannot

chain all related method invocations; for example, as follows:
8

JAXBMapping mapping = jaxbModel.get(qname);

8
https://github.com/corretto/corretto-8/blob/32a35a24e2791bc810a0b4d89ad685c97e

4485fa/src/jaxws/src/share/jaxws_classes/com/sun/tools/internal/ws/processor/mo

deler/wsdl/JAXBModelBuilder.java#L119

https://github.com/neo4j/neo4j/blob/a43b26fac61c59da813ec9302a24dd86f6657537/community/server/src/test/java/org/neo4j/server/rest/BatchOperationIT.java#L501
https://github.com/neo4j/neo4j/blob/a43b26fac61c59da813ec9302a24dd86f6657537/community/server/src/test/java/org/neo4j/server/rest/BatchOperationIT.java#L501
https://github.com/ballerina-platform/ballerina-lang/blob/27292e84b9f661da89b6c66840802f2196decb0d/tool-plugins/intellij/src/main/java/io/ballerina/plugins/idea/formatter/BallerinaFormattingModelBuilder.java#L328
https://github.com/ballerina-platform/ballerina-lang/blob/27292e84b9f661da89b6c66840802f2196decb0d/tool-plugins/intellij/src/main/java/io/ballerina/plugins/idea/formatter/BallerinaFormattingModelBuilder.java#L328
https://github.com/ballerina-platform/ballerina-lang/blob/27292e84b9f661da89b6c66840802f2196decb0d/tool-plugins/intellij/src/main/java/io/ballerina/plugins/idea/formatter/BallerinaFormattingModelBuilder.java#L328
https://github.com/corretto/corretto-8/blob/32a35a24e2791bc810a0b4d89ad685c97e4485fa/src/jaxws/src/share/jaxws_classes/com/sun/tools/internal/ws/processor/modeler/wsdl/JAXBModelBuilder.java#L119
https://github.com/corretto/corretto-8/blob/32a35a24e2791bc810a0b4d89ad685c97e4485fa/src/jaxws/src/share/jaxws_classes/com/sun/tools/internal/ws/processor/modeler/wsdl/JAXBModelBuilder.java#L119
https://github.com/corretto/corretto-8/blob/32a35a24e2791bc810a0b4d89ad685c97e4485fa/src/jaxws/src/share/jaxws_classes/com/sun/tools/internal/ws/processor/modeler/wsdl/JAXBModelBuilder.java#L119

An Empirical Study of Method Chaining in Java MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

if (mapping == null){

return null;

}

return mapping.getType (). getTypeAnn ();

A NullPointerException may be thrown by get(qname) if he or

she simply chains all themethod invocations get(qname), getType(),
and getTypeAnn(). We classified a chain into NullException-

Avoidance when null-checking has to be performed on the re-

ceiver side of the first invocation in a chain. We found nine chains

(2.34%) of this pattern in the sampled dataset.

The safe call syntax in Kotlin [7] is helpful for this pattern.

return jaxbModel.get(qname)? // Safe call

.getType (). getTypeAnn ();

The code above invokes getType() only when get(qname) returns
a non-null object. With this syntax, a programmer can group se-

mantically related invocations into a single chain. Furthermore, the

following negative opinions in the thread on StackOverflow [8]

will be addressed by introducing the safe call syntax:

Chaining different objects can also lead to unexpected

null errors. ... there’s no guarantee (as an outside de-

veloper looking at the code) that getSchedule will

actually return a valid, non-null schedule object.

Equivalent syntax also exists in Swift [9] and TypeScript [11]. The

syntax is called optional chaining syntax in those languages.

Library developers can also provide better user experience by

using Optional<T> for methods that possibly return null. The
example code of this pattern can be transformed into the following

if get(qname) returns Optional<JAXBMapping>:

return jaxbModel

.get(qname) // returns Optional <JAXBMapping >

.map(qname -> qname.getType (). getTypeAnn ())

.orElse(null);

The code above would be easier to understand since all the related

invocations are grouped into a chain.

4.2 RepeatedReceiver

Different methods are often invoked on the same object as follows:
9

event.getPresentation (). setEnabled(true);

event.getPresentation (). setVisible(true);

This code repeats the expression event.getPresentation(). This
repetition is not preferable in terms of code readability. We clas-

sified a chain as RepeatedReceiver when the receiver of the last

invocation is the same as the previous/next chain. We excluded a

chain from this pattern if the receiver is this or a class since no

code repetition exists in such cases. We also excluded chains where

programmers avoid chaining on purpose; for example as follows:
10

// These two statements can be written as a chain ,

// however , they are written separately.

// sb: java.lang.StringBuilder

9
https://github.com/eclipse/che/blob/e4d0f9987db58f3d46a3a727b88e601e84a5749b/i

de/che-core-ide-app/src/main/java/org/eclipse/che/ide/processes/actions/StopProc

essAction.java#L73

10
https://github.com/apache/incubator-pinot/blob/09eb0150dec47a28d5a4517e

4930183eb5dfd0af/pinot-common/src/main/java/com/linkedin/pinot/common/reque

st/QueryType.java#L567

sb.append("hasFilter:");

sb.append(this.hasFilter);

In the sampled dataset, we found 33 chains (8.57%) of this pattern.

The method cascading syntax in Smalltalk [12] and Dart [6] is

useful for removing such repetitions. With this syntax, the example

code of this pattern can be written as follows:

event.getPresentation ()

.setEnabled(true)

.. setVisible(true); // Dart -style syntax

The repetition can also be removed by setting the return value

of setEnabled(...) to this. However, when considering the de-

scriptive role of return types, some may think that it is not desirable

to return a value in a method named like setFoo. In that case, it

might be a good convention to name a normal setter (returning

nothing) as setFoo and a fluent setter (returning this) as withFoo.
Such a naming convention is adopted in TemporaryCredential in

AWS SDK
11
.

4.3 DownCast

When the invocation of a method needs downcasting, a chain is

frequently split as follows:
12

to make code easily understandable

firstBtn = (Button) findViewById(R.id.firstBtn);

firstBtn.setText(START);

If a programmer wants to write a single chain for this operation,

he or she needs to write nested parentheses as follows:

((Button) findViewById(R.id.firstBtn))

.setText(START);

However, the nested parentheses worsen the readability. We clas-

sified a chain as DownCast when it contains cast operations. Six

chains (1.56%) of this category are found in the sampled dataset.

Providing a method for downcasting relieves the problem in the

DownCast chains.

// When destination types are practically known

findViewById(R.id.firstBtn). asButton ()

.setText(START);

// When destination types are unknown

findViewById(R.id.firstBtn).as(Button.class)

.setText(START);

With such a method, an expression can be read from left to right

easily. Although the solution described here is for library devel-

opers, it would be unnecessary if the top type Object provides

the downcasting method as(...). This is a candidate for language
extension to Java for supporting method chains.

11
https://github.com/aws/aws-sdk-java/blob/dafccf5a1241b5655c542a45eae05a582c

3225de/aws-java-sdk-opsworks/src/main/java/com/amazonaws/services/opsworks

/model/TemporaryCredential.java#L186

12
https://github.com/yaowen369/DownloadHelper/blob/a27944d175cc48ddbe06151d

b8ad7cb415e9fa60/sample/src/main/java/com/yaoxiaowen/download/sample/Main

Activity.java#L144

https://github.com/eclipse/che/blob/e4d0f9987db58f3d46a3a727b88e601e84a5749b/ide/che-core-ide-app/src/main/java/org/eclipse/che/ide/processes/actions/StopProcessAction.java#L73
https://github.com/eclipse/che/blob/e4d0f9987db58f3d46a3a727b88e601e84a5749b/ide/che-core-ide-app/src/main/java/org/eclipse/che/ide/processes/actions/StopProcessAction.java#L73
https://github.com/eclipse/che/blob/e4d0f9987db58f3d46a3a727b88e601e84a5749b/ide/che-core-ide-app/src/main/java/org/eclipse/che/ide/processes/actions/StopProcessAction.java#L73
https://github.com/apache/incubator-pinot/blob/09eb0150dec47a28d5a4517e4930183eb5dfd0af/pinot-common/src/main/java/com/linkedin/pinot/common/request/QueryType.java#L567
https://github.com/apache/incubator-pinot/blob/09eb0150dec47a28d5a4517e4930183eb5dfd0af/pinot-common/src/main/java/com/linkedin/pinot/common/request/QueryType.java#L567
https://github.com/apache/incubator-pinot/blob/09eb0150dec47a28d5a4517e4930183eb5dfd0af/pinot-common/src/main/java/com/linkedin/pinot/common/request/QueryType.java#L567
https://github.com/aws/aws-sdk-java/blob/dafccf5a1241b5655c542a45eae05a582c3225de/aws-java-sdk-opsworks/src/main/java/com/amazonaws/services/opsworks/model/TemporaryCredential.java#L186
https://github.com/aws/aws-sdk-java/blob/dafccf5a1241b5655c542a45eae05a582c3225de/aws-java-sdk-opsworks/src/main/java/com/amazonaws/services/opsworks/model/TemporaryCredential.java#L186
https://github.com/aws/aws-sdk-java/blob/dafccf5a1241b5655c542a45eae05a582c3225de/aws-java-sdk-opsworks/src/main/java/com/amazonaws/services/opsworks/model/TemporaryCredential.java#L186
https://github.com/yaowen369/DownloadHelper/blob/a27944d175cc48ddbe06151db8ad7cb415e9fa60/sample/src/main/java/com/yaoxiaowen/download/sample/MainActivity.java#L144
https://github.com/yaowen369/DownloadHelper/blob/a27944d175cc48ddbe06151db8ad7cb415e9fa60/sample/src/main/java/com/yaoxiaowen/download/sample/MainActivity.java#L144
https://github.com/yaowen369/DownloadHelper/blob/a27944d175cc48ddbe06151db8ad7cb415e9fa60/sample/src/main/java/com/yaoxiaowen/download/sample/MainActivity.java#L144

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea T. Nakamaru, T. Matsunaga, T. Yamazaki, S. Akiyama, and S. Chiba

Table 2: Estimated Ratio of Pattern

Pattern Ratio 𝑐 = 95% 𝑐 = 99%

NullExceptionAvoidance 2.34% ±1.51% ±1.98%
RepeatedReceiver 8.57% ±2.80% ±3.67%
DownCast 1.56% ±1.24% -

ConditionalExecution 2.34% ±1.51% ±1.98%
14.8% ±3.55% ±4.66%

4.4 ConditionalExecution

Some methods are invoked only when certain conditions are satis-

fied; for example as follows:
13

if (buildLogger.isInfoEnabled ()) {

buildLogger.info(message , throwable);

}

We classified a chain as ConditionalExecution when it is condi-

tionally executed as shown above. We found nine chains (2.34%) of

this pattern in the sampled dataset.

The code in this pattern can be transformed into a single chain

if the library provides a method that takes a lambda expression as

its argument:

buildLogger.ifInfoEnabled(

logger -> logger.info(message , throwable));

This workaround is largely adopted in the JavaParser library. Other

Java libraries could adopt this workaround.

4.5 Estimated Ratios

We statistically estimated the ratio in the population from the results

obtained from the analysis of the randomly-sampled dataset. Table 2

summarizes the estimated ratios. The columns “𝑐 = 𝑛%” show

margins of errors at 𝑛% level of confidence. We put the symbol “-”

when the ratio in the sampled dataset is too low to compute the

valid margin of errors at that level of confidence. The last row of

the table shows the values for the sum of those discovered patterns.

As shown in the table, approximately 15% of chains can be com-

bined into a single chain with other invocations around that chain if

the appropriate language features or API design are provided. Since

we counted the number of chains conservatively, the real ratios

might be larger than the values shown in the table. For example, we

did not classify the following chain as NullExceptionAvoidance:

JAXBMapping mapping = jaxbModel.get(qname);

updateFoo (); // Possibly changes states

if (mapping == null){

return null;

}

return mapping.getType (). getTypeAnn ();

By exchanging the first and second statements, the above code can

be transformed into a single chain if the safe call syntax is available.

However, this exchange possibly changes the semantics of the code.

Thus, we did not count such code for NullExceptionAvoidance.

13
https://github.com/raphw/byte-buddy/blob/9364421492e830b883d10d9718d

6586480e35747/byte-buddy-dep/src/main/java/net/bytebuddy/build/BuildLogger.ja

va#L535

RQ. How Can We Extend Java?

Answer: We found two language features and four API designs

that allow programmers to chain more method invocations. Some

readers might think it is obvious that those features and design are

useful for method chaining. However, what is important is that our

quantitative analyses revealed how effective they are if adopted.

At least 10% of not-chained invocations can be transformed into a

chain. This quantitative result will be a basis for the design decision

when adding those features or adopting the library design.

Proposal for Language Designers: Language designers can save

the development effort of their users by implementing the safe call

syntax and method cascading syntax. The users can write com-

pact code by chaining method invocations with such syntax. In

Java, which is a language that does not support the syntax, ap-

proximately 10% of chains suffer from null-checking and writing

receiver objects repeatedly.

Best Practices in API Design: The following summarizes best

practices that we propose for Java library developers:

• Return Optional<T> when a method may return null.
• When creating a method returning a boolean value such as

isFoo(), create the method ifFoo(...) that takes lambda ex-

pressions.

• When creating a setter method such as setFoo(...), return
this in that method instead of returning nothing.

• When creating a public non-final class, provide the method for

downcasting.

Tool developers can save these efforts of library developers by

creating code generators for the boilerplate code.

5 THREATS TO VALIDITY

5.1 Internal Validity

The validity of ratios shown in Section 3.3, 3.4, and 4 highly depends

on our manual inspection of method chains. To discuss the validity

openly, we made our results of the inspection publicly available.

The details on the data are provided in Appendix A.

5.2 External Validity

We did not apply any filter (e.g. filter by project domains) to the

collected repositories. This supports the generalizability of our re-

sults. However, the trends in other languages would be different

especially when a language provides special constructs to build a

domain-specific language (DSL). Since method chaining is often

regarded as a technique to design a DSL embedded in a host lan-

guage, method chaining may not be used if the language provides

such special constructs (e.g. [1, 5]). Our results are more likely to

be applied to a language that does not provide such a construct

(e.g. PHP and JavaScript). The empirical study of this hypothesis is

future work.

6 RELATEDWORK

Heavy-tailed distributions are found in a number of source code

measures [16, 22, 25, 28, 29, 32, 40, 41]. For example, the study [22]

shows that such distributions are found in the lexical properties

of source code such as the number of lines and changed lines. The

https://github.com/raphw/byte-buddy/blob/9364421492e830b883d10d9718d6586480e35747/byte-buddy-dep/src/main/java/net/bytebuddy/build/BuildLogger.java#L535
https://github.com/raphw/byte-buddy/blob/9364421492e830b883d10d9718d6586480e35747/byte-buddy-dep/src/main/java/net/bytebuddy/build/BuildLogger.java#L535
https://github.com/raphw/byte-buddy/blob/9364421492e830b883d10d9718d6586480e35747/byte-buddy-dep/src/main/java/net/bytebuddy/build/BuildLogger.java#L535

An Empirical Study of Method Chaining in Java MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

study [29, 40] shows that they are found in the structural properties

such as the number of subclasses and the in-degree and out-degree

in dependency networks. The paper [28] says

if one were to analyze the distribution of another

measure of software, it would be most surprising to

find it not following a power law or other heavy-tailed

distribution.

However, none of those empirical results can describe the power-

law distribution we observed in the number of method chains.

While a number of power-law distributions have been reported,

the generation model of those distributions is less studied. Turnu

et al. proposed a modified Yule process to model the evolution of

object-oriented system properties [40]. Lin and Whitehead pro-

posed a model based on preferential attachment and self-organized

criticality [28]. The model proposal for the number of method

chains is future work that is needed to deeply understand method

chaining.

The use of language features is often empirically studied. In Java,

the use of generics [17, 36], lambda expressions [31], annotations

[17], and cast operators [30] has been studied. In the study on

lambda expressions [31], Mazinanian et al. investigated not only

the use in the real-world code but also the reason by interviewing

the authors of the source code. Such a study would be beneficial

to better understand the advantage of method chaining. In the

literature [39], Tanaka et al. analyze the use of method chaining

from the view point of functional idioms in Java.

The study [24] empirically shows that the violation of the law

of Demeter has a negative impact on software quality. As pointed

out in the Stackoverflow thread [8], chaining method invocations

violates the law in most cases. Considering these facts, our results

imply that real-world software increasingly becomes error-prone.

However, method chaining is said to cooperate well with method

completion systems in IDEs and let programmers write code easily

and quickly [34, 42]. Further research needs to be carried out that

inspects problems and merits in method chaining for the future

development of language features and static analyzers addressing

those problems.

High development cost is a well-known drawback of a fluent

interface [14]. The cost becomes significantly higher when the

developers choose to implement typed chaining [19] since a number

of class definitions are required to achieve typed chaining. The tools

and techniques proposed in the paper [13, 15, 20, 21, 26, 34, 42]

help library developers to create a fluent interface instantly from

grammar definitions.

There are more features that help programmers to chain method

invocations although only a small number of languages provide

those features. D [4] and Nim [37] have the uniform function call

syntax, which allows chaining the invocation not only of methods

but also functions. The scope functions in Kotlin [10] can be used

to compose a chain with conditional statements and loops without

storing an intermediate state into a temporary variable. The class

extension mechanism without inheritance help programmers to

use a fluent library to mitigate the extensibility problem pointed

out in the blog posts [14, 38], Swift [3] and Kotlin [2] offer such

a mechanism. Assume that we provide the library for counting

numbers implemented as follows:

class Counter {

n = 0;

Counter increment () { n++; return this; }

}

The user of this library can count up a number by chaining the

method call increment(). Suppose that the user need to add the

method decrement() to this library. Programmers would use in-

heritance, a feature implemented in most object-oriented languages,

to extend existing code:

class ExtCounter extends Counter {

ExtCounter decrement () { n--; return this; }

}

However, this approach does not work as expected since the method

increment() returns an instance of Counter:

new ExtCounter (). increment () // Returns Counter

.decrement (); // Method not found!

The user can avoid this problem by overwriting the existing meth-

ods in Counter, but it is too tedious to overwrite all the existing

methods when a given library provides tens of methods. With the

class extension, the user can add decrement() as expected.

7 CONCLUSION

This paper presented our empirical study of method chaining in

Java. Our analysis quantitatively revealed the widespread and in-

creasing trend of method chaining. To provide information for

future language/library development, we estimated how effective it

would be to introduce language features and API design for method

chaining.

Although our results support the acceptance of method chaining

in the real world, user studies need to be carried out to assert

the acceptance. It is also interesting and beneficial for a better

understanding of method chaining to investigate why real-world

programmers prefer (or do not prefer) method chaining. The issues

mentioned in the StackOverflow thread [8] would be helpful to

start such an investigation. All of those studies are our primary

future work.

REFERENCES

[1] [n.d.]. Domain-Specific Languages. http://docs.groovy-lang.org/docs/latest/htm

l/documentation/core-domain-specific-languages.html. Accessed on 08/23/2019.

[2] [n.d.]. Extensions - Kotlin Programming Language. https://kotlinlang.org/docs/

reference/extensions.html. Accessed on 08/23/2019.

[3] [n.d.]. Extensions - The Swift Programming Language (Swift 5.1). https://docs.s

wift.org/swift-book/LanguageGuide/Extensions.html. Accessed on 08/23/2019.

[4] [n.d.]. Functions - D Programming Language. https://dlang.org/spec/function.ht

ml. Accessed on 08/23/2019.

[5] [n.d.]. Higher-Order Functions and Lambdas - Kotlin Programming Lan-

guage. https://kotlinlang.org/docs/reference/lambdas.html#passing-a-lambda-

to-the-last-parameter. Accessed on 08/23/2019.

[6] [n.d.]. Method Cascades in Dart. http://news.dartlang.org/2012/02/method-

cascades-in-dart-posted-by-gilad.html. Accessed on 08/23/2019.

[7] [n.d.]. Null Safety - Kotlin Programming Language. https://kotlinlang.org/docs/

reference/null-safety.html. Accessed on 08/23/2019.

[8] [n.d.]. OOP - Method chaining - why is it a good practice, or not? - Stack

Overflow. https://stackoverflow.com/questions/1103985/method-chaining-why-

is-it-a-good-practice-or-not. Accessed on 08/23/2019.

[9] [n.d.]. Optional Chaining - The Swift Programming Language (Swift 5.1). https:

//docs.swift.org/swift-book/LanguageGuide/OptionalChaining.html. Accessed

on 08/23/2019.

[10] [n.d.]. Scope Functions - Kotlin Programming Language. https://kotlinlang.org

/docs/reference/scope-functions.html. Accessed on 08/23/2019.

http://docs.groovy-lang.org/docs/latest/html/documentation/core-domain-specific-languages.html
http://docs.groovy-lang.org/docs/latest/html/documentation/core-domain-specific-languages.html
https://kotlinlang.org/docs/reference/extensions.html
https://kotlinlang.org/docs/reference/extensions.html
https://docs.swift.org/swift-book/LanguageGuide/Extensions.html
https://docs.swift.org/swift-book/LanguageGuide/Extensions.html
https://dlang.org/spec/function.html
https://dlang.org/spec/function.html
https://kotlinlang.org/docs/reference/lambdas.html#passing-a-lambda-to-the-last-parameter
https://kotlinlang.org/docs/reference/lambdas.html#passing-a-lambda-to-the-last-parameter
http://news.dartlang.org/2012/02/method-cascades-in-dart-posted-by-gilad.html
http://news.dartlang.org/2012/02/method-cascades-in-dart-posted-by-gilad.html
https://kotlinlang.org/docs/reference/null-safety.html
https://kotlinlang.org/docs/reference/null-safety.html
https://stackoverflow.com/questions/1103985/method-chaining-why-is-it-a-good-practice-or-not
https://stackoverflow.com/questions/1103985/method-chaining-why-is-it-a-good-practice-or-not
https://docs.swift.org/swift-book/LanguageGuide/OptionalChaining.html
https://docs.swift.org/swift-book/LanguageGuide/OptionalChaining.html
https://kotlinlang.org/docs/reference/scope-functions.html
https://kotlinlang.org/docs/reference/scope-functions.html

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea T. Nakamaru, T. Matsunaga, T. Yamazaki, S. Akiyama, and S. Chiba

[11] [n.d.]. TypeScript 3.7 · TypeScript. https://www.typescriptlang.org/docs/handbo

ok/release-notes/typescript-3-7.html. Accessed on 12/30/2019.

[12] Kent Beck. 1997. Smalltalk Best Practice Patterns.
[13] Eric Bodden. 2014. TS4J: A Fluent Interface for Defining and Computing Typestate

Analyses. In Proceedings of the 3rd ACM SIGPLAN International Workshop on the
State of the Art in Java Program Analysis.

[14] Yegor Bugayenko. [n.d.]. Fluent Interfaces Are Bad for Maintainability. https:

//www.yegor256.com/2018/03/13/fluent-interfaces.html. Accessed on 08/23/2019.

[15] Arvid Butting, Manuela Dalibor, Gerrit Leonhardt, Bernhard Rumpe, and Andreas

Wortmann. 2018. Deriving Fluent Internal Domain-specific Languages from

Grammars. In Proceedings of the 11th ACM SIGPLAN International Conference on
Software Language Engineering.

[16] S. Cook, R. Harrison, and P. Wernick. 2005. A simulation model of self-organising

evolvability in software systems. In IEEE International Workshop on Software
Evolvability (Software-Evolvability’05). 17–22.

[17] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. 2014.

Mining Billions of AST Nodes to Study Actual and Potential Usage of Java

Language Features. In Proceedings of the 36th International Conference on Software
Engineering. 779–790.

[18] Martin Fowler. [n.d.]. FluentInterface. https://www.martinfowler.com/bliki/Flu

entInterface.html. Accessed on 08/23/2019.

[19] Steve Freeman and Nat Pryce. 2006. Evolving an Embedded Domain-specific

Language in Java. In Companion to the 21st ACM SIGPLAN Symposium on Object-
oriented Programming Systems, Languages, and Applications.

[20] Yossi Gil and Tomer Levy. 2016. Formal Language Recognition with the Java

Type Checker. In Proceedings of 30th European Conference on Object-Oriented
Programming.

[21] Yossi Gil and Ori Roth. 2019. Fling — A Fluent API Generator. In Proceedings of
30th European Conference on Object-Oriented Programming.

[22] AA Gorshenev and Yu M Pis’mak. 2005. Punctuated Equilibrium in Software

Evolution. Physical review. E, Statistical, nonlinear, and soft matter physics 70
(2005), 067103.

[23] Radu Grigore. 2017. Java Generics Are Turing Complete. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages.

[24] Y. Guo, M. Wuersch, E. Giger, and H. C. Gall. 2011. An Empirical Validation of

the Benefits of Adhering to the Law of Demeter. In 2011 18th Working Conference
on Reverse Engineering.

[25] L. Hatton. 2009. Power-Law Distributions of Component Size in General Software

Systems. IEEE Transactions on Software Engineering 35, 4 (2009), 566–572.

[26] Tomer Levy. 2017. A Fluent API for Automatic Generation of Fluent APIs in Java.
Ph.D. Dissertation. Israel Institute of Technology.

[27] K. Lieberherr, I. Holland, and A. Riel. 1988. Object-oriented Programming: An

Objective Sense of Style. SIGPLAN Not. 23 (1988), 323–334.
[28] Z. Lin and J. Whitehead. 2015. Why Power Laws? An Explanation from Fine-

Grained Code Changes. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories.

[29] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. 2008. Power Laws

in Software. ACM Trans. Softw. Eng. Methodol. 18, 1 (2008), 2:1–2:26.
[30] Luis Mastrangelo, Matthias Hauswirth, and Nathaniel Nystrom. 2019. Casting

about in the Dark: An Empirical Study of Cast Operations in Java Programs. Proc.
ACM Program. Lang. (2019).

[31] Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2017.

Understanding the Use of Lambda Expressions in Java. Proc. ACM Program. Lang.
1, OOPSLA (2017), 85:1–85:31.

[32] Chris Myers. 2003. Software systems as complex networks: Structure, function,

and evolvability of software collaboration graphs. Physical review. E, Statistical,
nonlinear, and soft matter physics 68 (2003), 046116.

[33] Tomoki Nakamaru and Shigeru Chiba. 2020. Generating a Generic Fluent API in

Java. The Art, Science, and Engineering of Programming (2020).

[34] Tomoki Nakamaru, Kazuhiro Ichikawa, Tetsuro Yamazaki, and Shigeru Chiba.

2017. Silverchain: a fluent API generator. In Proceedings of the 16th ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences.

[35] Mark EJ Newman. 2005. Power laws, Pareto distributions and Zipf’s law. Con-
temporary physics 46, 5 (2005), 323–351.

[36] Chris Parnin, Christian Bird, and Emerson Murphy-Hill. 2011. Java Generics

Adoption: How New Features are Introduced, Championed, or Ignored. In Pro-
ceedings of the International Working Conference on Mining Software Repositories
(proceedings of the international working conference on mining software reposi-

tories ed.).

[37] Dominik Picheta. 2017. Nim in Action.
[38] Marco Pivetta. [n.d.]. Fluent Interfaces are Evil. https://ocramius.github.io/blog/

fluent-interfaces-are-evil/. Accessed on 08/23/2019.

[39] Hiroto TANAKA, Shinsuke MATSUMOTO, and Shinji KUSUMOTO. 2019. A

Study on the Current Status of Functional Idioms in Java. IEICE Transactions on
Information and Systems (2019).

[40] I. Turnu, G. Concas, M. Marchesi, S. Pinna, and R. Tonelli. 2011. A modified

Yule process to model the evolution of some object-oriented system properties.

Information Sciences 181, 4 (2011), 883 – 902.

[41] J. Wu, R. C. Holt, and A. E. Hassan. 2007. Empirical Evidence for SOC Dy-

namics in Software Evolution. In 2007 IEEE International Conference on Software
Maintenance.

[42] Hao Xu. 2010. EriLex: An Embedded Domain Specific Language Generator. In

Objects, Models, Components, Patterns.
[43] Tetsuro Yamazaki, Tomoki Nakamaru, Kazuhiro Ichikawa, and Shigeru Chiba.

2019. Generating a fluent API with syntax checking from an LR grammar. Proc.
ACM Program. Lang. (2019).

A DATA

The collected method chains and the results of our manual inspec-

tions are publicly available as an archive file
14
. The archive file

contains the following materials:

data.txt: List of all the collected chains.

metadata.txt: List of files and the number of lines for each file.

rq1_{short,long,extlong}_201{0,8}.md: Sampled chains for RQ1.

rq1_201{0,8}.csv: Result of our manual inspections in RQ1.

rq2.md: Sampled chains for RQ2.

rq2.csv: Result of our manual inspections in RQ2.

14
https://doi.org/10.5281/zenodo.3697939

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html
https://www.yegor256.com/2018/03/13/fluent-interfaces.html
https://www.yegor256.com/2018/03/13/fluent-interfaces.html
https://www.martinfowler.com/bliki/FluentInterface.html
https://www.martinfowler.com/bliki/FluentInterface.html
https://ocramius.github.io/blog/fluent-interfaces-are-evil/
https://ocramius.github.io/blog/fluent-interfaces-are-evil/
https://doi.org/10.5281/zenodo.3697939

	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Definition of Method Chain

	3 Is Method Chaining Accepted?
	3.1 Power-law Distribution
	3.2 Bias in Frequency
	3.3 Categories
	3.4 Extremely Long Chains

	4 How Can We Extend Java?
	4.1 NullExceptionAvoidance
	4.2 RepeatedReceiver
	4.3 DownCast
	4.4 ConditionalExecution
	4.5 Estimated Ratios

	5 Threats to Validity
	5.1 Internal Validity
	5.2 External Validity

	6 Related Work
	7 Conclusion
	References
	A Data

